
1

Defining and Measuring the Productivity of Programming Languages†

Ken Kennedy, Charles Koelbel
Computer Science Department, Rice University

Robert Schreiber
Laboratories, Hewlett Packard Company

The overall objective of programming support systems is to make it possible to produce
software faster with the same workforce, with no degradation, and possibly an
improvement, in software quality. Generally, there are two ways to approach this goal.
First, we can increase the effectiveness of individual application developers by providing
programming languages and tools that enhance programming productivity. Second, we
can broaden the community of application developers by making programming more
accessible. As it happens, the use of higher-level languages and programming interfaces
supports both these strategies: by incorporating a higher level of abstraction, such
languages make application development both easier and faster. (For the purposes of this
paper, we will define “programming language” to encompass the entire toolset—
language, compiler, debugger, tuning tools—associated with the language.)

We must, however, ensure that these advantages do not come at the cost of performance.
Programs written in a high-level language and intended to solve large problems on highly
parallel machines must not be egregiously less efficient than the same applications
written in a lower-level language. If they are, then the language is unlikely to be
accepted. Because this has been a traditional stumbling block for high-level languages,
our productivity analysis must incorporate metrics of both programming effort and
performance. Furthermore these metrics must be linked so that the trade-off between
language power and program efficiency can be evaluated properly.

Similarly, if high-level languages are to be accepted, programs written in them cannot
exhibit more faults, consume more memory, or be less portable than if written in low-
level competitors. Fortunately, these have not been troublesome issues in the past, so we
feel justified in not addressing them head-on in this paper, although we do feel that such
factors should be investigated in the future.

Thus, for any given development task, each programming language must be evaluated
with respect to at least two criteria: the time and effort required to write, debug, and tune
the code, and the performance of the code that results. The goal of this paper is to define
these two evaluation metrics clearly and unambiguously and to propose methods by
which to measure them.

†This work was sponsored by the Department of Defense under Department of Interior contract number
NBCHC020087. Opinions, interpretations, conclusions, and recommendations are those of the authors and
are not necessarily endorsed by the United States Government.

2

Primary Metric: Time to Solution
By increasing productivity, we aim, in the end, to reduce total time to solution of a
problem P, which we denote T(P). That is, we want to minimize

(1))()()(PrEPIPT +=

where P is the problem of interest, I(P) is the implementation time for a program to solve
P, E(P) is the average execution time per run of the program, and r is a problem-specific
weighting factor that reflects the relative importance of minimizing execution time versus
implementation time. Thus, r will be larger for programs that are to be run many times
without any change.

If it is more appropriate to focus on the cost of generating the solution than on the time to
solution, we arrive at essentially the same model:

)()()(PrMPDPC +=

where D(P) is the cost of developing the application code and M(P) is the average cost of
machine time for one run of the application. Because of the isomorphism between the
time and cost models, most of the strategies we propose can be applied to both problems.
For our present purpose—developing a strategy for defining and assessing the
productivity of a programming interface to a machine—program development (and
tuning) time and production run time are the first-order, measurable impacts of the
choices we make; therefore, we focus on time rather than monetary cost.

The formulation in Equation (1) assumes that “implementation” and “execution” are
activities that do not overlap. This is clearly an oversimplification, but to our mind an
acceptable one. However, the formula leaves us with the vexing problem of choosing for
a particular application the appropriate value for r, which estimates how many times that
application will be executed. If the application is only to be run once, then r can be 1, but
most important applications will be run many times with no change between runs, except
for data set changes and minor source tweaks. It is therefore critical to ensure that r is not
underestimated. How does one know how many times a program will be used over the
course of its lifetime? We may need to rely on opinion to get an answer. Indeed, all
performance programmers must be implicitly making and using an estimate of this
parameter; for in any program tuning effort, further work is stopped at a point of
diminishing returns, where the added development time is not compensated for by an
anticipated reduction in execution time as weighted by an estimate, perhaps only a tacit
one, of r. Thus, while r cannot be known (except in rare cases after a program is finally
retired), we think it can be usefully approximated. We discuss the use of expert opinion
in estimating parameters of the model in the section “Measuring Programmer
Performance and Power”, below.

Note that formulation (1) does not include the notion of compile time. In current
languages, compile time is generally small relative to the running time of the object code.
However, more advanced languages may require whole-program compilation, which

3

could elevate compilation time to a significant factor in return for lowered execution
time. At the other end of this spectrum, interpreted languages remove the compile time
penalty, albeit at execution time cost; for applications that exhibit low r or low E(P), the
resulting gain in user productivity surely helps to explain their popularity (Cleve Moler
estimates that Matlab has approximately one million users). This raises the question of
whether compile time should be incorporated into the model explicitly. If so, should it be
an independent term, of should it be bundled in some way with implementation time or
execution time. Our inclination is include it as a third, independent term. Thus, we have
the more detailed time-to-solution model

(2))()()()(21 PErPCrPIPT ++=

where C(P) is the average compilation time, r1 is the number of compilations and r2 is the
number of runs. Where compile time is a first-order issue, this model is preferable, but to
keep things simpler we drop the compile-time term and user the simple model (1) in the
remainder of the paper.

Relative Efficiency and Relative Power of a Programming Language
The implementation and execution times I(P) and E(P), which we have explicitly shown
to be dependent on the problem being solved or program being written, clearly depend on
many other things. Among these are the algorithm used, the data structures, the machine,
its architecture and its degree of parallelism, the programming language, and the
programming team and its experience with problem, machine, and language.

Our central thesis, however, is that within reasonably bounded and interesting situations,
such as the mix of problems solved at a given supercomputer site, we can meaningfully
define and measure the relative efficiency and power of two proposed programming
languages. Furthermore, we suspect strongly that in comparing different programming
languages, the relative power and efficiency will not vary widely between sites, but rather
are genuine attributes of the language itself. We therefore propose two derived measures,
relative power, denoted ρ, and efficiency, denoted ε, as productivity metrics. These
relative measures can be used to compare programming systems.

It will be useful, in any given context (a given problem, a given machine) to define some
programming language and its toolset as the basis for comparison. Thus, let P0 be a
version of a given program written by a professional in a standard programming
language, which we take as a reference point. In some contexts, studies on uniprocessors
for example, this base case might be a sequential Fortran program. On a small SMP it
might be C with the OpenMP extensions, and on a large cluster it could be Fortran with
Message Passing Interface (MPI). We compare the implementation and execution time of
P0 with those of PL, the equivalent program in a new programming language. The relative
power ρL of the language, measuring its ease of use, is the ratio of implementation times,
while the efficiency εL, measuring performance of the language, is the ratio of execution
times. That is,

4

(3)

!

"L =
I(P 0)

I(PL)

#L =
E(P0)

E(PL)

Generally, ρL>1 and εL<1 for high-level languages, reflecting the tradeoff between
abstraction and performance. Both ρ and ε depend on the application; however, we
believe that ρ and ε are relatively constant for a particular language: that is, they do not
vary by orders of magnitude, at least within its chosen domain.

Assigning values to ρ and ε requires developing two programs in a controlled
environment where I(P) and E(P) can be measured. This is practical for relatively small
benchmark problems. (Of course, running many small experiments can be very
expensive, too; it is therefore important that the set of benchmarks be relatively
compact.). For large-scale projects, it is unrealistic to expect that two or more different
languages would be used in independent, parallel efforts. If one team of programmers
does both implementations, the comparison is rendered invalid by the experience
(concerning the problem) gained in the first effort.

Relating this back to our goal of reducing time to solution, we find that

!

T(PL) = I(PL) + rE(PL)

= I(P0) "
I(PL)

I(P0)
+ rE(P0) "

E(PL)

E(P0)

=
1

#
L

I(P0) +
1

$
L

rE(P0)

In other words, once we have good estimates for ρL and εL, it is relatively easy to estimate
the time to implement and run an application in a new language L if we know the
implementation and execution times for the base language. With given values of r, I(P0)
and E(P0), there may be several tuples (ρ,ε) that minimize T(PL). It is therefore important
to consider both metrics in choosing the programming system. A convenient way to
present these is as a graph in which relative power is displayed on the y-axis and
efficiency on the x-axis, as shown in Figure 1. Contours on this graph can show
productivity tradeoffs. In particular, a contour can be plotted to show (ρ,ε) pairs that lead
to identical T(PL).

5

Figure 1. Power-efficiency graph.

The graph in Figure 1 illuminates an important issue: how one can improve productivity
by improving programming languages and their implementation. Generally, this can be
done in two ways (or combinations thereof). First, one can take existing high-
performance languages and improve their power, possibly by adding advanced features,
without sacrificing their performance. Thus, Fortran could be improved by adding
powerful new language primitives; this was a goal of the Fortran 90, 95, and 2000 efforts.
Unfortunately, the performance of applications written in these new generations of
Fortran has been compromised by the inefficient object code generated by immature
compiler technology, thus reducing the expected productivity gains. Second, one can
enhance productivity by improving the performance of very high-level languages such as
Matlab. This is the goal of a number of efforts to provide full or partial compilation
facilities for Matlab [DeRose, Chauhan].

We propose to use graphs like the one in Figure 1, rather than a simple scalar
measurement, as the main way of displaying productivity to users. Note that this lets the
end user determine whether a language is powerful enough to compensate for the
incurred level of inefficiency. It allows us to reason about productivity goals in terms of
the relative power-efficiency plane.

It will be quite instructive to plot (ρ,ε) pairs for a collection of data points, each generated
by a different application, to verify our assertion that they will cluster, with one cluster

6

for each distinct, interesting language and toolset. If the clustered structure is not so
simple, we will have learned something interesting about our programming languages.

Although we believe this two-dimensional representation to be the best way to display
language productivity, it may nevertheless be useful to distill the measurements of
performance and effort across tasks into a single quantity that characterizes the
productivity achieved by the use of a given language, recognizing that any reduction from
the multidimensional measured data to a single scalar loses information. This suggests
that a plausible metric for the productivity of a language is some measure that
incorporates its relative power and the relative performance of its object code. In order to
combine these two dimensionless quantities in a meaningful way, we need an exchange
rate. Consider that the ratio of times to solution is

!

T(P
0
)

T(P
L
)

=
I(P

0
) + rE(P

0
)

I(P
L
) + rE(P

L
)

=
"
L
I(P

L
) + #

L
rE(P

L
)

I(P
L
) + rE(P

L
)

=
"
L

+ #
L
X

1+ X

where X = r E(PL) / I(PL). Thus, the problem-dependent parameter X allows us to
combine the relative power and the efficiency of a programming language into a relative
productivity metric:

(4)

!

productivity =
" + #X

1+ X

If, as we assert above, the relative power and the efficiency of a language are largely
problem independent, then it follows that the effect of the problem on overall
productivity, defined as the relative time to solution, is captured by the problem-
dependent parameter X. For the base language L0, ρ=ε=1; hence productivity for the base
language is fixed at 1. From equation (4), it is easy to see why, for long-running
applications, programmers might be willing to sacrifice language power to achieve much
higher efficiencies through parallelism. For example, if it took five times longer to
reprogram a Fortran application using MPI to achieve a speedup of 50, the overall
productivity of Fortran plus MPI, relative to single-processor processor Fortran, would be
at least 25, assuming that the ratio X of total running time to implementation time
remained greater than 1.

For languages of higher power than the base, where we expect that ρ>1 and ε<1,
productivity, as defined by equation (4), declines with increasing values of X from a high
of ρ at X=0 to asymptotically approach a lower bound of ε as X grows. This behavior is
illustrated by the curve in Figure 2.

7

Figure 2. Productivity as a function of running time over implementation time.

Figure 2 also shows the importance of achieving high efficiency in a high-productivity
language. For example, if some new language has a power that is two times greater than
the base language, but only half the efficiency, productivity is 1.25 when X=1 and it
equals that of the base language when X=2. If, on the other hand, the efficiency of the
new language is 75 percent of that of the base language, the crossover point occurs at
X=4, illustrating the value of rather modest improvements in efficiency. Generalizing, if
we define X1 as the value of X for which productivity of the new language is the same as
for the base language (i.e., productivity = 1), then from equation (4) we get

!

X
1

=
" #1

1#$
.

These discussions lead us to consider whether there is some lower bound on acceptable
language performance for long-running applications. As an illustration, consider Matlab.
In the high-performance computing community today, the power of Matlab and its
implementation is not enough to compensate for the low performance delivered by the
Matlab interpreter on large-scale applications. Thus Matlab remains a prototyping
language and “serious” applications are usually rewritten in a lower level programming
language. This implies a second effect, not directly captured by the metrics ρ and ε alone:
there is a minimum level of acceptable performance, and a programming language that
fails to deliver at this minimum level cannot be useful for “production” applications, no
matter how greatly it reduces programming time and effort. This effect is reflected in the
model above by productivity dropping below 1 for a relatively small value of X.

Measuring Application Performance and Efficiency
There is a well-developed literature for measuring application performance in parallel
systems, which we will not try to summarize here. Suffice it to say that experience has

8

shown that standard sets of benchmarks provide a fair means of comparing systems
(including hardware, software, and languages).

We are examining the relationship between program development time and execution
time, as they are influenced by choice of language. In so doing, it is important to consider
the full power of a new language. It may be possible to write Fortran-like code in Java,
but that would tell us little about the power or efficiency of Java. Thus, when comparing
two programming models on the same application benchmark, it is essential that the
application be coded in a natural style for each of the programming models. The goal is
not to show that you can write a program of comparable performance in a higher-level
programming system, but rather to measure the performance cost paid when you write
that application in the most natural style. Thus it is best that the different versions of the
applications be written by developers with no knowledge of how the optimizing
compilers work for each model.

It is also vital that the set of benchmarks be representative of the actual applications run
on the system, lest the system developers optimize inappropriately. The apocryphal story
of an OS team achieving a 50% performance gain in the system’s idle wait loop comes to
mind. Care must be taken to specify the rules (as was done in the NAS parallel
benchmarks [NAS]) so as to eliminate the temptation to indulge in one of Bailey’s twelve
abuses [Bailey].

Given accurate measures of execution time, it is simple to calculate ε from its definition:

!

" =
E(P

0
)

E(P
L
)

.

Measuring Programmer Performance and Relative Power
This leaves us with the problem of measuring relative language power, which is much
more challenging. While it is often possible to agree that some languages are more
powerful (or easier to program in) than others, it is extremely difficult to measure in any
precise way the degree of difference. What we would really like to measure is
development time. In other words, we need a metric that fairly compares the time taken
to produce the same application by programmers starting out at the same time in the two
different languages.

In their paper in the present issue, Faulk et al. describe several standard measurement
techniques, their advantages, and their drawbacks [Faulk]. We consider these techniques
here for the purpose of measuring program development time. In the terminology of
Faulk, they are “time and motion studies,” which is the direct measurement of program
development time, the “structured interview” technique, in which the opinions of
experienced developers constitute the primary data, and “automated measurement,” in
which the program development tools generate useful effort-related statistics as a
byproduct of their use by programmers.

9

Automating the tools would offer a straightforward way to measure compile time, a
component of the detailed model (2). Statistics like the number of compiles per day might
prove to be informative as well, as might the nature of the changes to program text
between compiles. Tools can provide counts of lines, statements, “function points” and
other direct code metrics. However, the often-used “source lines of code” metric does not
appear to us to be generally reliable as a direct predictor of program development time,
especially when programs in different languages are to be compared. Development time
encompasses coding time, debugging time and performance tuning time; the average
coding, debugging, and tuning time per line of code may vary from one language to
another. For example, it is generally conceded that a Java program takes less time to
develop than a C++ program of roughly the same length because Java is strongly typed
and garbage collected, so there are fewer opportunities to introduce errors. Thus, some
models (see the paper by Post and Kendall in the present issue [Post]) apply a language-
specific multiplicative factor to the lines-of-code measure. Further study is clearly needed
to decide on the proper role of automated measurement as a way to assess and understand
development effort and time, and the effect of programming tools on productivity. A
disadvantage, clearly, is that these tools provide their estimates as the program is
developed, not before. Two parallel efforts, in separate languages, would be needed to
measure their relative power.

To measure implementation time directly, we would set up experiments in which two
different sets of programmers implement the same application in two different
programming languages. Then the power of the higher-level language would be the ratio
of implementation time in the lower-level language to implementation time of the same
program in the higher-level language, based on the previous definition:

!

" =
I(P

0
)

I(P
L
)

Unfortunately, measurements of this sort, which seem tractable in principle, usually turn
out to be invalid because it is difficult to factor out individual ability, particularly in a
task like programming where some remarkable individuals can be integer factors more
productive than others and where the resources devoted to the measurement task make a
sufficiently large sample group impossible. Moreover, if L is a newly proposed language,
there will not generally be a pool of talented, experienced L programmers. A comparison
of novice L programmers against novice Fortran programmers would not be a valuable
indicator of anything.

Because of these difficulties, we believe that expert opinions, solicited through carefully
crafted questions before, after, or during a project, can generate useful estimates of
relevant information, including program development effort. In other words, we will need
to incorporate the views of the end users in evaluating the productivity scores of different
languages, including their best guesses as to the relative power compared to a base
language. As an example, consider Matlab. Most scientists and engineers now believe
that programming in Matlab is far more productive than programming in, say, Fortran. So
how much more productive is Matlab than Fortran? Programmers may have an opinion

10

about this, and we can measure their opinions. In other words, it may be possible, through
structured interviews to have expert programmers estimate the time to completion of an
implementation of each of a set of benchmark problems in both the new programming
language L and the base language L0. These opinions can then be aggregated into
cumulative distribution functions that can be used to estimate I(PL) and I(P0). Strategies
for obtaining and integrating the opinions of a group of experts have been used in the
well-known “Delphi” method [Dalkey] and in computer-human interface evaluations for
many years. Recent enhancements of methods for the aggregation of expert opinions
offer promise for improving the predictive power of this approach [Chen].

Other Issues
So far, we have assumed that each language has a single value of ρ and a single value of
ε for all relevant computations. This is seldom (if ever) precisely the case. We can
compensate by measuring power and efficiency for a standard collection of benchmarks
or a collection particularly suitable for a given customer or computer purchase.

If a single power or efficiency metric is desired, then an overall value can be computed
from the individual benchmarks. Let

!

{P
0

1
,P

0

2
,...,P

0

n
} be the set of benchmark programs

written in the base language and let

!

{P
L

1
,P

L

2
,...,P

L

n
} be the programs written in the higher-

level language. Then the power and efficiency for that collection of benchmarks is:

!

"L =
E(P

0

j
)

j=1

n

#

E(PL
j
)

j=1

n

#

$L =
I(P

0

j
)

j=1

n

#

I(PL
j
)

j=1

n

#

If desired, the times for the benchmarks could be weighted to reflect their importance, or
to normalize for expected execution times different from the benchmarks. Alternatively
we may use the ratio of the sum over all programs of time-to-solution. But, as stated
above, we think that the best use of a collection like this is to plot all the data in the
power/efficiency space and observe the clusters that emerge.

The ratio of sums is preferable to an arithmetic mean of the individual ratios because the
arithmetic mean would emphasize outliers. For example, if language 0 is really great on
one benchmark it creates an enormous ratio for that benchmark which gets averaged in.
The ratio of weighted sums is more defensible as the ratio of runtimes on a hypothetical
composite workload consisting of a weighted mix of the given workloads. Another
outlier-tolerant approach could be to use the median of the individual ratios.

We have used time as the primary measurable quantity for both implementation and
execution. Depending on the context, it may make sense to use other measures. One that
is rather natural in large procurements is cost. On the implementation side (I(P) and ρ),

11

this would represent the cost of programmer time, and possibly cost of ownership of
development machines. On the execution side (E(P) and ε), this would represent the cost
of the machine time, which could take all costs of ownership (purchase, staffing, electric
bill) into account. One still measures largely the same primary data (runtimes, program
development hours) and then applies a time-to-cost conversion. Our definitions or
relative power, efficiency, and productivity can still be used.

The value of the computed result is another important facet of the productivity problem.
If it is a constant for the given problem P, independent of all other factors, then little
changes. If, as is often true, the computation has some time value, then using time-to-
solution as the appropriate metric still seems right. Measuring the value of computations
directly is hard, but if the need arises, intelligent aggregation of market-based estimates,
as advocated by Chen, Fine, and Huberman, [Chen] will be an interesting approach.

Other issues are not so easily incorporated into the analysis above. For example, if a code
will be modified many times over its lifetime, the assumption of separate development
and execution passes needs re-examination. We would want a way to quantify
maintainability, modifiability, code reuse, and so forth. Defining and measuring
correctness, security, maintainability, reusability, or other less qualitative properties of
codes is difficult: Faulk et al. report that these virtues are generally viewed as impossible
to accurately measure. One approach would be to allow subjective ratings for these
aspects of the process, and report significant differences in ratings between languages.
Faulk proposes a way to do this for maintainability, as an example of this approach.
Given our language-centric point of view, an interesting question is whether, and to what
extent, the programming language (as opposed to the programming style adopted)
influences the reusability of HPC code developed in it, and whether there is a reusability-
efficiency tradeoff like the relative power-efficiency tradeoff discussed in this paper.

Summary
We propose the use of two dimensionless ratios, relative power ρ and relative efficiency
ε, to measure the productivity of programming interfaces. Determining values of these
metrics for a new language may require writing a fixed class of benchmarks in the new
language and measuring the implementation effort and running time incurred. These
measures will be compared with the corresponding measures for a base language such as
C or Fortran. (We note that the measurement of implementation effort, and of
performance, may involve subjective measure such as the opinions of developers.) Rather
than combine these metrics into a single number representing a universal productivity, we
propose that they be represented graphically in at least two dimensions so that the trade-
offs between abstraction and performance are clearly depicted. On the other hand, we
introduce a single problem-dependent parameter that allows us to reason about the
relative productivity of two languages for a given problem.

References
[Bailey] D. H. Bailey. Twelve ways to fool the masses when giving performance results
on parallel computers. Supercomputer Review, 4:8, 54–55, 1991.

12

[NAS] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R.
Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, March 1994.

[Chauhan] A. Chauhan, C. McCosh, K. Kennedy, and R. Hanson. Automatic type-driven
library generation for telescoping languages. In Proceedings of the ACM International
Conference for High Performance Computing and Communications (SC2003), Phoenix,
Arizona, November 15–21, 2003.

[Chen] Kay-Yut Chen, Leslie R. Fine and Bernardo A. Huberman. Predicting the Future.
Information Systems Frontiers 5:1, 47 – 61, 2003.

[Dalkey] Norman C. Dalkey. Analyses from a group opinion study. Futures 2:12, 541–
551, 1969.

[DeRose] L. DeRose and D. Padua. Techniques for the translation of MATLAB
programs into Fortran 90. ACM Transactions on Programming Languages and Systems,
21:2, 286–323, Mar. 1999.

[Faulk] Stuart Faulk, Philip Johnson, Adam Porter, Walter Tichy, and Lawrence Votta.
Measuring HPC Productivity. This issue.

[Post] D. E. Post and R. P. Kendall. Software Project Management and Quality
Engineering Practices for Complex, Coupled Multi-Physics, Massively Parallel
Computational Simulations: Lessons Learned from ASCI. This issue.

